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Motivations

Importance of clear sky vertical motion in cloud organization and
radiation-circulation coupling

Sparsity and cost of in situ observations

Currently no available satellite measurement

Future satellite missions focus on assessing w within clouds
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Implementation
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Insights on possible causes of vertical motion
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Main idea of the method




Main idea of the method
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Subsidence dries the atmosphere and increases brilliance temperature
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Hypotheses

® (H1) At the wavelength considered water vapor is the only
significant absorber and e™™ << 1

e (H2) Relative humidity is vertically uniform in the vicinity
of the emission level

® (H3) The specific extinction coefficient « is vertically uniform in
the vicinity of the emission level

® (H4) Moist adiabatic lapse rate (WTG)

e (H5) Hydrostatic approximation

(H5)
® (H6) Perfect gas
(H7)

® (H7) No water vapour turbulent fluxes
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Link between RH and temperature at emission level

Formula for optical thickness :

Integration done using :
® hydrostatic approximation
® perfect gas law

® Clausius Clapeyron law
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Link between RH and temperature T* at emission level

Result :
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Link between relative humidity variations and vertical motion

Conservation of specific humidity :

q(pa t+ dt) = q(p - Wdtv t)

which implies a direct link between vertical velocity and relative
humidity variations.

dRH RH (LSRC,F,77 )
= -1 xw

dt  p \ RgT
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Consequence

Direct link between vertical velocity w and variations of
temperature T* at emission level :

1 Lp Ls/R, +2T" dT*
LRIs 1R, T L/R,+ T " dt

R\/ gT *

w =

The relation is independent on spectroscopic properties !
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Implementation main steps

Compute horizontal winds

e Compute temperature T* from satellite radiances

Compute Lagrangian derivative d T*/dt

e Compute vertical velocity

Implementation
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Determination of horizontal winds

Per-filtering to select water vapour filaments.

peak search

cross-correlation

v(t)

Wieneke, 2017
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Determination of horizontal winds

Normalized RMSE =1.91

r=0.76

Normalized RMSE =1.7

r=0.69
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Determination of temperature at 7 = 7*

Using these images we deduce :

e Optical depth 75 of the atmosphere at wavelength A
® Sea Surface / Cloud Top Temperature T
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Determination of temperature at emission level

Radiative transfer equation :
Ri= [ Bi(r)edr + e By (Tie)
0
We invert this equation

— We can deduce temperature T* = f(R), Ts)
— Correction from surface or cloud-top temperature inhomogeneities
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Determination of Lagrangian derivative of temperature d 7*/dt

@ Compute horizontal winds
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Evaluation against JOANNE data
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Evaluation against JOANNE data
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Evaluation against JOANNE data

Normalized RMSE =1.49 r=0.53 r=041
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Evaluation against OTREC data

Grids of dropsondes in tropical Pacific during Aug-Oct 2019

OTREC 2019 Nk Eeend

& B1 flight pattern
& B2 fight pattern

Typical fight tracks and planned dropsonde locations

© Google Earth 2018

900 km

Vémel et al., 2021
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Evaluation against OTREC data

® In regions of active deep convection
® Flight duration of 3-5h
® Dropsonde resolution 1 degree

Vertical velocity computed from :
® Dropsondes using mass conservation (Raymond & Fuchs-Stone,
2021)
e GOES images for several hours, then interpolated onto flight
track using the closest time from dropsonde launch
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Evaluation against OTREC data
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Evaluation against OTREC data
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Evaluation in the NARVAL simulations

2.5km resolution in the Atlantic (500 x 2500km)
NARVAL-1 : Winter trades (December 2013)
NARVAL-2 : ITCZ edge (August 2016)

Hourly output of 3D fields

Simulation of brilliance temperature of GOES-16 ABI Instrument
using radiative transfer code RTTOV.

Simulated performances are similar to those during OTREC and
EUREC4A.

Evaluation
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Evaluation at subhourly time scale

15 January 2022 : Hunga Tonga eruption triggered worldwide gravity
waves

GOES-W image at 6.9pym
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Evaluation at subhourly time scale

Evaluation
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Media File (video/mp4)


Gravity waves as a good candidate for mesoscale vertical motion

GOES Retrieval
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Gravity waves as a good candidate for mesoscale vertical motion

Results
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animation0.mp4
Media File (video/mp4)


Conclusions

® Ability to retrieve temporal and spatial variations of mesoscale
vertical velocity

® |imited quantitative performance

® Measurements at high spatial (2km) and temporal (10mn)
resolution over full geostationary disk

e First results seem to support the hypothesis for gravity waves (vs
radiation) as a main cause for mesoscale vertical motion

Next steps :
e Evaluation of the method against VHF radar data 7

® Use of the tool to study convective aggregation
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Determination of temperature at 7 = 7*

At what level 7* do we measure < ?

Simple possible hypothesis : 7 =1— T* =T,

But actually we observe variations of temperature at the following
level :
" = (1)s7, =14+n~1.35

oT

where n = hCRV

depends only on the channel wavelength.

Results



Evaluation in the NARVAL simulations

2.5km resolution in the Atlantic (500 x 2500km)
NARVAL-1 : Winter trades (December 2013)
NARVAL-2 : ITCZ edge (August 2016)

Hourly output of 3D fields

Simulation of brilliance temperature of GOES-16 ABI Instrument
using radiative transfer code RTTOV.

Because output is "only" hourly it is not possible to use a linear
regression to compute d T /dt, only a difference between H and H+1
is done. — we expect a poorer performance of the retrieval
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Evaluation in the NARVAL simulations

One time series of omega in the simulation and the retrieval for each
colour — one correlation per block — mean correlation and
uncertainty
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Evaluation in the NARVAL simulations
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Evaluation in the NARVAL simulations

One series of omega in the simulation and the retrieval for each colour
— one correlation per timestep — mean correlation and uncertainty
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Evaluation in the NARVAL simulations
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Gravity waves as a good candidate for mesoscale vertical motion

Small scale(10km)  Mesoscale(100km)  Large scale(500km)
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Radiative cooling matters mostly for large scale circulations only in
the free troposphere
But local impact of vertical velocity on PBL cooling
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Gravity waves as a good candidate for mesoscale vertical motion
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Determination of temperature at emission level

Radiative transfer equation :
R = / " By(r)edr + e By (Tur)
0

We invert this equation
— We can deduce temperature T* = f(R\, Ts)
— Correction from surface or cloud-top temperature inhomogeneities

T~ Bt |- Ry — e " BA(T5)
F(1+n)— e (1+2)

Ts
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Determination of horizontal winds

e High pass filter to select small scale features (<30km)

® Band rejection filter at 10km to remove fast gravity waves

3

(ex : GOES-E 6.2pm channel over Barbados, 24 Jan 2020)

Results

40
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