Process-oriented evaluation of UT cloud parameterizations using a Cloud System Concept Example: Bulk ice scheme in LMDZ model

Claudia Stubenrauch, Marine Bonazzola, Ionela Musat, Sofia Protopapadaki (-2017) Laboratoire de Météorologie Dynamique / IPSL, Paris, France

Monsoon Clouds over Bangladesh (Archive: NASA, International Space Station)

Clouds from IR Sounder (CIRS) -> Cloud System Concept

≻long time series (HIRS, AIRS, IASI) & good areal coverage

>good IR spectral resolution -> sensitive to cirrus

similar performance day & night, COD_{vis} > 0.2, also above low clouds (Stubenrauch et al., ACP, 2017)

cloud systems built from adjacent grid cells with similar p_{cld} ; convective cores & cirrus anvil from \mathcal{E}_{cld} (*Protopapadaki et al., ACP, 2017*)

grid cell resolution 0.5°, sub-grid Cb, Ci, thin Ci fractions can be adapted to other resolutions

(from 0.25° to GCM resolution)

3D cloud systems from Machine Learning trained on CALIPSO-CloudSat (HR, DZ, RR) / TRMM (LH)

K/day

Cloud System Concept + 3D HR fields :

- 1) relation between convection cirrus anvil
- 2) process-oriented GCM evaluation
- 3) dynamical response to atmospheric heating

⁽Stubenrauch, Caria et al., ACP, 2021)

Bulk ice cloud scheme ($v_m \& D_{eff}$) in a GCM

Cirrus bulk properties = mass- or area-weighted integrals of particle size distribution (PSD) $m = a D^b A = c D^d$ coefficients depend on ice crystal habit & size

Fall speed & ice crystal size distribution impact cirrus life time & radiative effects
 ε_{cld} = f(D_{eff}, IWC)
 Goal: construct bulk ice cloud scheme which coherently treats ice cloud physics & radiation
 from reviewed existing parameterizations

Thermodynamics dictates presence of ice clouds ice phase controlled by T & IWC by relative humidity -> v_m , $D_{eff} = f(IWC,T)$ as suggested by airborne & in situ observations

Current version of LMDZ: $v_m = f(IWC)$, $D_{eff} = f(T)$ v_m tuned to achieve radiative balance (x 0.3)

Synthesis : $v_m \& D_{eff} = f(T, IWC)$

empirical : $v_m = f(IWC, T)$ Deng & Mace 2008 / Schmitt & Heymsfield 2009; $D_{eff} = f(v_m)$ v_m , D_{eff} from moments of PSD, parameterized as f(IWC, T) Field et al. 2007 / Furtado et al. 2015 / Baran et al. 2016

Tuning parameters most relevant for high clouds

	FALLICE	EPMAX	RQH
CNTRL	0.3	0.9985	0.40
(a) New parameterizations			
Empirical vm and Deff (vm)	0.9	0.9990	0.08
PSDM vm and Deff	0.9	0.9988	0.11
PSDM v_m and $D_{eff}(v_m)$	0.9	0.9988	0.11
(b) Sensitivity studies			
FALLICE+	0.5	0.9985	0.40
RQH-	0.3	0.9985	0.10
EPMAX+	0.3	0.9990	0.40
Scaled PSDM vm	0.3	0.9985	0.40

FALLICE: scaling of fall speedEPMAX: maximum precipitation efficiencyRQH: rel. width of sub-grid water distribution above 250 hPa (*ratqsh*)

In order to introduce realistic fall speed, RQH had to be reduced by a factor of 4

PSDM parameterization & tuning -> slightly too absorbing & too reflective in the tropics

New diagnostics using CIRS cloud observation simulator

IR Sounders provide cloud height p_{cld} & emissivity ϵ_{cld} ; sensitive to cirrus

- clouds divided into sub-sections of similiar vertical structure
 keep only sub-sections with IR optical depth > 0.1
- ["] filter observation times: 1:30AM, 9:30AM, 1:30PM, 9:30PM LT
- -> total & high cloud cover, p_{cld} , T_{cld} , ε_{cld} , z_{cld} , fraction of Cb, Ci, thin Ci

advantages: allows to evaluate i) sub-grid fractions of Cb, cirrus & thin cirrus ii) diurnal cycle of UT cloud properties

UT cloud cover & its composition (Cb, Ci, thin Ci)

Control simulation too few high clouds with too many Cb New bulk ice schemes -> increased high clouds, with more Ci & thin Ci, in better agreement with observations

UT Cloud System Concept to assess GCM parameterizations

Cloud System Concept relates anvil properties to processes shaping them -> process-oriented evaluation of detrainment / convection / microphysics parameterizations

Example: Towards coherent bulk ice cloud scheme deduced from thermodynamics in LMDZ

Current LMDZ model: $v_m = f(IWC)$, De = f(T) v_m tuned to achieve balance (x 0.3)

observations: v_m = f(IWC,T), De = f(IWC,T)

empirical: v_m = f(IWC,T), De = f(v_m) Deng & Mace (2008), Heymsfield et al. 2003

PSDM: v_m, De from moments of ice crystal size distributions as f(IWC,T)

Field et al. (2007), Furtado et al. 2015, Baran et al. 2016

horizontal cloud system emissivity structure sensitive to v_m, De

AIRS snapshot 3 July 2008 AM

UT cloud system statistics

New parameterizations -> improvement of cloud system property distributions

Introduction of IWC-T dependence -> improvement of cloud system size distribution Decrease of RQH -> improvement of cloud system T distribution

process-oriented UT cloud system behavior

New process-oriented diagnostics based on Cloud System Concept powerful constraint:

more realistic $v_m - D_{eff}$ -> more realistic anvil size & ε horizontal structure (increasing thin Ci) development Tuning adjustment of UT sub-grid water variability (RQH) -> larger anvils & more thin cirrus 9

Summary & Outlook

bulk ice cloud schemes should coherently couple v_m (cloud physics) & D_{eff} (cloud radiative effects)
 realistic v_m -> adjusted tuning -> UT water sub-grid variability had to be reduced for radiation balance

v_m =f(IWC,T) instead of f(IWC); D_{eff} is now directly linked to v_m (or to same size distribution)

- Cloud System diagnostics provides powerful constraints: new bulk ice schemes -> larger cloud systems & slightly less emissive anvils, in better agreement with CIRS observations
- Cloud System Concept links anvils to convection, allows process-oriented evaluation: behavior of anvils with increasing convective depth & along statistical life cycle
 -> new bulk ice schemes seem to improve this behavior

Stubenrauch, C. J., Bonazzola, M., Protopapadaki, S. E., & Musat, I., **New cloud system metrics to assess bulk ice cloud schemes in a GCM**. J. Advances in Modeling Earth Systems, 11, doi:10.1029/2019MS001642, 2019

- > Replace D_e directly by β_{ext} , ω_0 , g (λ , IWC, T) of Baran et al. 2016 :
 - Fits adapted to bandwidths of LMDZ RT & integrated into LMDZ code
 - tuning & simulation; save radiative heating rates to output for evaluation with

radiative heating rates deduced from A-Train Observations & Machine Learning

Stubenrauch, C. J., Caria, G., Protopapadaki, S. E., & Hemmer, F., **3D Radiative Heating of Tropical Upper Tropospheric Cloud Systems** derived from Synergistic A-Train Observations and Machine Learning, Atmos. Chem. Phys., 21, doi:10.5194/acp-21-1015-2021, 2021 next step: improve formulation of sub-grid UT rel. water variability (RQH threshold) using AIRS climatology of Kahn et al. 2009, 2011

ϵ – T relation of UT cloud systems

- Decreasing RQH leads to smaller cloud system emissivity at colder T, in better agreement with the data
- Midlatitudes: height at which RQH is applied should be different than in tropics (250 hPa)

spare slides

Atmospheric Humidity changes

rel. humidity profiles compared to ERA-Interim:

new parameterizations less dry in tropical but too wet in higher latitude upper troposphere => RQH should depend on latitude / season & land / ocean

Analytical expressions: D -> bulk properties PSD generally expressed as :

$\mathbf{N}(\mathbf{D}) = \mathbf{N}_0 \ \mathbf{D}^{\mu} \mathbf{e}^{-\lambda \mathbf{D}}$

D maximum dimension ice crystals, λ slope, μ dispersion; exponential PSD: $\mu=0$ decrease in $\lambda \rightarrow$ PSD broadening; PSD bends down for smaller crystals, when $\mu > 0$

Cirrus bulk properties = mass- or area-weighted integrals of PSD,

with $m = a D^b$ $A = c D^d$ b=3 for sphere, b = 2 for aggregates, b = 1.5 for dendrites

 $\mathbf{IWC} = \mathbf{Pm}(\mathbf{D}) \ \mathbf{N}(\mathbf{D}) \ \mathbf{dD} = \mathbf{P}_{a} \ \mathbf{N}_{0} \ \mathbf{D}^{b+\mu} e^{-\lambda \mathbf{D}} \ \mathbf{dD} = \mathbf{a} \ \mathbf{N}_{0} \ \Gamma(\mathbf{b}+\mu+1)/\lambda^{(\mathbf{b}+\mu+1)}$ $\mathbf{D}_{\mathbf{m}} = \mathbf{P}\mathbf{D}^{3} \ \mathbf{N}(\mathbf{D}) \ \mathbf{dD} \ / \ \mathbf{P}\mathbf{D}^{2} \ \mathbf{N}(\mathbf{D}) \ \mathbf{dD} = (\mathbf{b}+\mu+0.67)/\lambda \ \text{Mitchell et al. 1991}$

coefficients depend on ice crystal habit & size, can they be assumed to be constant with T? Field 2007 supposes aggregates (b = 2) in PSD moment parameterization

$$v_t \sim (m/A)^{0.6} D^{0.3} f(p)$$
 $v_t = A D^B$

 $\mathbf{v}_{m} = \mathbf{Pm}(\mathbf{D}) \mathbf{v}_{t}(\mathbf{D}) \mathbf{N}(\mathbf{D}) \mathbf{dD} / \mathbf{Pm}(\mathbf{D}) \mathbf{N}(\mathbf{D}) \mathbf{dD}$

 $\mathbf{v_m} = \mathbf{A} \mathbf{D_m}^{\mathbf{B}}$ Heymsfield et al. 2013

A & B for 3 D ranges (Heymsfield et al. 2013)

A & B for 2 D ranges (Furtado et al. 2015)

PSD moment parameterization

Field et al. 2007 (F07): 13000 PSDs, of 4 field campaigns (tropics & midlatitudes)

 $\mathbf{M}_{n} = \mathbf{P}\mathbf{D}^{n} \mathbf{N}(\mathbf{D}) \mathbf{d}\mathbf{D} = \mathbf{A}(n) * \mathbf{e}^{\mathbf{B}(n)*\mathbf{T}} * \mathbf{M}_{2}^{\mathbf{C}(n)}$ $\mathbf{M}_{2} = \mathbf{IWC} / a \quad \mathbf{D}_{m} = \mathbf{M}_{3} / \mathbf{M}_{2} = \mathbf{a} \mathbf{M}_{3} / \mathbf{IWC} \quad \mathbf{v}_{m} = \mathbf{A}\mathbf{D}_{m}^{\mathbf{B}} - \mathbf{M}_{3} / \mathbf{M}_{3} = \mathbf{M}_{3} / \mathbf{M}_{3} - \mathbf{M}_{3} / \mathbf{M}_{3} = \mathbf{M}_{3} / \mathbf{M}_{3} - \mathbf{M}_{3} + \mathbf{M}_{3} - \mathbf{M}_{3} = \mathbf{M}_{3} / \mathbf{M}_{3} - \mathbf{M}_{3} - \mathbf{M}_{3} + \mathbf{M}_{3} - \mathbf{M}_$

 $V_m = A M_B$ ice : A = 1042 / B = 1.0 (SI units) snow : A = 14.3 / B = 0.416for each D the smallest v_t of both: ice D < 600 µm & snow D > 600 µm *Furtado et al. 2015 (F15)*

slope of v_m (F07-H13) & (F07-F15) same for tropical anvils & synoptic *(parameterization combines measurements)* compares well with synoptic cirrus of H13 2 A-B instead of 3 A-B : smaller v_m max values at 100 cm/s

Empirical parameterizations : $v_m = f(T, IWC)$

- Heymsfield et al. 2007 (H07): 20000 PSDs from 2 field campaigns tropical anvils (T > -70°C) & synoptic cirrus (T>-54°C)
- Deng & Mace 2008 (DM08): from longterm ARM in situ statistics, retrieved from radar measurements; 1999-2005 -> 30000 hrs

convective: TWP ARM (T> -75°C) synoptic: SGP ARM

similar behaviour

(T>-65°C)

 Mitchell et al. 2011 (M11): 3 recent field campaigns young anvil cirrus, aged anvil cirrus, in situ cirrus, Arctic cirrus similar bevahour; except Artic cirrus : v_m not dependent on IWC
 TC4 (Costa Rica, Jul-Aug 2007), NAMMA (African Monsoon, 2006), ISDAC (Arctic, Apr 2009)

Elsaesser et al. 2017 (E17): convective outflow from 4 field campaigns
 TC4, NAMMA, MC3E (20 May 2011), SPARTICUS (Jan-Jun 2010)
 -> GISS GCM

Schmitt & Heymsfield 2009 (SH09): 2 field campaigns (-86°C - -56°C) v_m = f(IWC)

Synthesis : v_m = f(T, IWC)

$v_m - D_e$ Strategies for LMDZ GCM

or

D_m = F07 PSD momentum

 $D_{eff} = 0.17 \text{ x } D_{m} \text{ (assumed aggregates, fitted to } D_{eff} v_{m}, Baran et al. 2016)}$ $PSDM v_{m}, D_{m} \& D_{e} = f(D_{m})$

Next step: use for radiative transfer directly single scattering property (SSP) parameterization f(IWC,T) of Baran et al. 2016 (same PSDs as in F07)